x^2+5x+(25/4)=3/4

Simple and best practice solution for x^2+5x+(25/4)=3/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+5x+(25/4)=3/4 equation:



x^2+5x+(25/4)=3/4
We move all terms to the left:
x^2+5x+(25/4)-(3/4)=0
We add all the numbers together, and all the variables
x^2+5x+(+25/4)-(+3/4)=0
We get rid of parentheses
x^2+5x+25/4-3/4=0
We multiply all the terms by the denominator
x^2*4+5x*4+25-3=0
We add all the numbers together, and all the variables
x^2*4+5x*4+22=0
Wy multiply elements
4x^2+20x+22=0
a = 4; b = 20; c = +22;
Δ = b2-4ac
Δ = 202-4·4·22
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{3}}{2*4}=\frac{-20-4\sqrt{3}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{3}}{2*4}=\frac{-20+4\sqrt{3}}{8} $

See similar equations:

| 11·x=3 | | 2w-4=6 | | 24÷x=8 | | w-9=4.5 | | 19+4x-20=6x-35 | | 1+2x-7=5x | | 4(5+2x)+12=136 | | 3x-2x+4=4+x | | 9x-12=6x-6 | | a/5.5=3.2 | | 7b-15=5b-2 | | 100+2000h=18000+150h | | .25x-2=9 | | -6+12=2x+28 | | 5x+13=73+3x | | D^3=25d | | 9x-3=8x=7 | | (5v-10)/v-6=5/2 | | 3y/4+10/4=2y | | 130=(4L)(2w) | | -1/5b=-20 | | 24+n=14 | | -3(2r+7=3 | | 3/4x+12=-5-2/3 | | -161=-6x-5(-3x+16) | | 32/3x=6 | | 9-3x=-1+2x | | 4y+13=6y+12 | | -3.8b+19.16=-7.2b-16.9+7.5 | | x^2+5x+(25/4)=(3/4) | | 17x-3=17x-8=175 | | 16-32=7p+4 |

Equations solver categories